
Article: Modding Guide

Modding for Fun and profit (but mostly fun)

Introduction

Ara: History Untold brand-new and what can and can’t be modded will be a bit of a moving target as we race to harden the game to ensure

stability while simultaneously opening up more and more of the game to modders.

In other words, what we can mod today is a lot less than what we will be able to mod in the future. This guide will provide modders some of

the basic structure for modding in Ara as well as some examples.

Chapter 0: ZNO, ZSchema, & ZData

Ara: History Untold (or just Ara) utilizes a unique Data structure known as ZNO. ZNO is integrated into the Nitrous Engine that powers Ara.

There are two key elements to understand when modding: .ZSchema and .ZData.

ZSchema

.ZSchema defines the various fields for a data type and the rules for formatting such a data type. The .ZSchema for a particular type of

content can help clarify what fields exist and are expected in the Template Struct.

ZData

.ZData is used to implement new elements and content into Ara. When modding, you will edit or update ZData to achieve your creative

vision. To experienced modders and scripters, this will be highly reminiscent of working with . JSON files.

Required Tools

To work with .ZData, you can use any text editor you are familiar with. Common editors used are Microsoft's Visual Studio Code and

Notepad++.

Chapter 1: Data Modding

1.1 New Content

.ZData is used to define Items, Resources, Religions, Units, and much more. You can add new elements by adding new .ZData using

existing .ZSchema.

We'll start with an example of a new Item. In this example, as a Modder, we want to add a new item to serve as a City Amenity—a Pet Frog.

Start by creating a Folder for the mod, the PetFrogsMod folder. In this folder we're going to create a new .ZData file. Create a blank file in

you favored text editor and save it with the .zdata extension. For our example I've saved it as PetFrogItems.zdata in the new PetFrogsMod

folder.

Using Items.zschema as a reference I can create a new item entry in the .ZData file. At the top of the file there needs to be a reference to

the schema being used. This needs to reference the file name of the .ZSchema.

1 schema Items;

each new entry needs to open with “export” and a reference to the template being used. For the example we’re using the ItemTemplate from

the Items.zschema.

Here we’ve set up the item to be usable as an Amenity in Cities.

1.2 Existing Content

Instead of adding a new Resource type let’s edit an existing type. To update Data in Ara you are not required to try and edit an existing file.

Instead you will create another new file in your text editor. For our example I've saved it as PetFrogResources.zdata in the new

PetFrogsMod folder.

Like before I’m using NaturalResources.zschema. So I’m opening the file with a reference to the Schema.

This time though I’m not creating an entirely new entry. I’m taking the entry Dyes from the base game NAturalResources0.zdata. I’m going

to be making an addition to the type of things that can be harvested from Dyes to include our new Pet Frogs.

1 export ItemTemplate itm_petFrog =

2 {

3 .Name = "Pet Frog",

4 .Description = "A happy, jumping boy that brings everyone joy.",

5 .FlavorText = "He jumps, he brings joy",

6 .RecipeID = "rcp_AIAssistants",

7 .AtlasID = "AIAssistants",

8 .uiRarity = RulesTypes.eRarity.Common,

9 .uiType = RulesTypes.ItemType.Luxury,

10 .uiHarvestType = RulesTypes.HarvestType.NoneOfTheAbove,

11 .Flags = (Flags.HasActive | Flags.Resource| Flags.Consumable),

12 .ActivateBuffs =

13 {

14 "buf_Item_Happiness_15",

15 "",

16 "",

17 "",

18 "",

19 "",

20 "",

21 "",

22 },

23 .uiGiveConsumeItemsForNumTurns = 300u,

24 .ActivateBuffsForImprovements =

25 {

26 "buf_Item_Happiness_15",

27 "",

28 "",

29 "",

30 "",

31 "",

32 "",

33 "",

34 },

35 };

1 schema NaturalResources;

1 export NaturalResourceTemplate nrc_Dyes =

2 {

3 .Name = "TXT_ITM_NATURAL_DYES",

When we run the project with our Mod enabled the data here will overrule the existing data for Dyes. So any other additional changes made

to the data here will impact the game.

(Yes, I’ve made frogs really easy to harvest. Everyone deserves a pet frog.)

1.3 ZData Cheat Sheet

4 .Description = "TXT_ITM_DESC_NATURAL_DYES",

5 .EncartaStrategy = "TXT_ENC_ITM_NATURAL_DYES_DESC_STRATEGY_0",

6 .EncartaHistory = "TXT_ENC_ITM_NATURAL_DYES_DESC_HISTORY_0",

7 .Asset = "Resource_Dyes",

8 .AtlasID = "Dyes",

9 .PlacementWeightAdjust = -0i,

10 .Rarity = RulesTypes.eRarity.Common,

11 .Flags = (NaturalResourceFlags.Hidden | NaturalResourceFlags.Renewable),

12 .BiomesBitFlags = (RulesTypes.BiomeFlags.TemperateGrassland | RulesTypes.BiomeFlags.TemperateForest |

RulesTypes.BiomeFlags.Mediterranean | RulesTypes.BiomeFlags.Savanna |

RulesTypes.BiomeFlags.TemperateRainforest | RulesTypes.BiomeFlags.TropicalForest |

RulesTypes.BiomeFlags.TropicalRainforest),

13 .uiMinAlt = 2000u,

14 .uiMaxAlt = 2100u,

15 .fBonusForFreshWater = 1.500000000f,

16 .fBonusForAdjacentToCoast = 1.000000000f,

17 .MinDepositSize = -1i,

18 .MaxDepositSize = -1i,

19 .HarvestorType = (RulesTypes.HarvestorType.Farm),

20 .HarvestType = (RulesTypes.HarvestType.Plant),

21 .HarvestOptions =

22 {

23 {

24 .Item = "itm_Dyes",

25 .ProductionRequired = 150u,

26 .HarvestCount = 1u,

27 },

28 {

29 .Item = "itm_petFrog",

30 .ProductionRequired = 10u,

31 .HarvestCount = 1u,

32 },

33 },

34 .BonusForNearbyPlacedResources =

35 {

36 },

37 };

Buffs Buffs.zschema Buffs are data referenced by many

aspects of Ara and is used to do

things such as allow

Improvements to raise

Productivity or Amenities increase

how much Food is harvested by

Farms.

Governments Governments.zschema Governments are unlocked

throughout a game of Ara and all

Data Type Schema File Overview

have their own benefits,

drawbacks, and can impact the

number of Cities a player can

manage.

Improvements Improvements.zschema Improvements are the buildings

the player places in their city, each

having a different effect or benefit.

Items Items.zschema Items cover a wide range of things

in Ara. An item is everything from

the Wool harvested from a Sheep

node to the Game Console crafted

at an Improvement and utilized as

Supply and Amenity.

Masterpieces Masterpieces.zschema Masterpieces define the type of

Masterpieces a Paragon can

randomly unlock when set to

produce Masterpieces at an

Improvement.

Natural Resources NaturalResources.zschema Natural Resources defines the

nodes that appear in the world

with harvestable items. The

NaturalResources data uses

Flags to define what Biomes the

resource can spawn in and has an

array for the options of things that

can be harvested from the node.

Paragons Paragons.zschema Paragons defines the various

Paragons that can join the player

randomly throughout a game.

Recipes Resipes.zschema Recipes define the rules for

Crafting an item and is referenced

by Improvements to determine

what items can be crafted at them.

Religion Buffs ReligionBuffs.zschema Religion Buffs defines the Verses

a Player can gain randomly as

their Religion expands and what

buffs the Verse provides.

Technologies Technologies.zschema Technologies defines the various

things the player can Research to

unlock new things in Ara. The

pacing cost is centralized in a list

of variables at the top of

Technologies0.zdata that you can

use as reference for adding new

Technologies or editing existing

Technologies.

This list does not encompass all data that exist but some of the most common data types used for adding content to Ara.

Chapter 2: Setting Up The Mod

2.1 GameCoreData Setup

In order to properly load a mod you need to create a new .zdata file named GameCoreData.zdata and include it in the folder with our other

.ZData changes. GameCoreData.zdata lets Ara know what all to load in as part of the mod and how to properly read the files.

The Config file for our Pet Frogs Mod will look something like this:

We are indicating that for this mode we are adding Item Data and Natural Resource data.

2.2 Proper Placement of Mod Folder

Our Mod Folder for Pet Frogs has all three of the files we’ve created in it. Now we move the file to the Mods folder for Ara. In your file

explorer try to get to: %LOCALAPPDATA%\Ara History Untold

If that doesn’t work navigate to App Data and then to Local. Try finding your folder for Ara manually.

Once in the Local App Data Ara folder open the Mods folder. If one does not exist create a new folder named Mods. Move the folder for your

mod into the Mods folder.

2.3 Updating Settings & Loading The Mod

There is one more step in order to make sure Ara will properly load your Mod. Back in the Ara folder under Local App Data there is a file for

Settings. Open the file in a text editor. We are looking for a section that looks something like:

Your setup may look slightly different or be broken up by other settings lines, but these are the variables we care about. We need to change

EnabledMods to 1 (for true.) And we need to set one of the GameCourdeMode#Source to our folder name. So the end product will look

something like:

Units Units.zschema Units defines the military Units

that can be recruited by the player

and deployed into Forces.

1 schema ZNODataLibrary;

2 export Library Root =

3 {

4 .Groups =

5 {

6 .ItemTemplates =

7 {

8 .FromFiles = { "PetFrogItems.zdata" },

9 },

10

11 .NaturalResourceTemplates =

12 {

13 .FromFiles = { "NaturalResources0.zdata" },

14 },

15 },

16 };

1 EnabledMods=0

2 GameCoreMod0Source=

3 GameCoreMod1Source=

4 GameCoreMod2Source=

5 GameCoreMod3Source=

2.5 Testing Your Work

Your mod should now be ready for testing! Congratulations!

Launch Ara and enjoy your Mod.

Chapter 3: Modding Technologies

Now that you have the basic structures down, let’s make a simple example.

Let’s make techs take longer to research.

In the game we have a single file called Technologies0.zdata that contains all the techs in the game.

Here’s an example:

1 EnabledMods=1

2 GameCoreMod0Source=Pet Frogs

3 GameCoreMod1Source=

4 GameCoreMod2Source=

5 GameCoreMod3Source=

1 export TechnologyTemplate tch_Archery =

2 {

3 .Name = "TXT_TCH_ARCHERY",

4 .Description = "TXT_TCH_DESC_ARCHERY",

5

6 .AtlasID = "Archery",

7 .EncartaEntry = "tch_Archery",

8 .EncartaStrategy = "TXT_ENC_TCH_ARCHERY_STRATEGY_0",

9 .EncartaHistory = "TXT_ENC_TCH_ARCHERY_HISTORY_0",

10 .Domains = (RulesTypes.Domain.Military),

11 .Era = RulesTypes.TechEras.AncientEra,

12 .iRoughDate = -20000i,

13 .uiResearchCost = AncientEraCost,

14 .SearchTags =

15 {

16 "TXT_TECHNOLOGY",

17 "TXT_ITM_RESEARCH",

18 "TXT_DOMAIN",

19 "TXT_RARITY",

20 "TXT_RTY_UNCOMMON",

21 "TXT_TECH_ERA_ANCIENT",

22 "TXT_TCH_ARCHERY",

23 "TXT_TCH_DESC_ARCHERY",

24 },

25 .Flags = 0,

26 .UnlockRecipesIDs =

27 {

28 "rcp_Bow",

29 },

30 .UnlockImprovementsIDs =

31 {

32 "imp_Watchtower",

33 "imp_Camp",

34 },

35 .UnlockGovernmentsIDs =

36 {

Notice that we use a variable for the cost: AncientEraCost

We define these costs at the top of the file:

int AncientEraCost = 50;

int BronzeAgeCost = 150;

int IronAgeCost = 300;

int AntiquitiesCost = 400;

int EarlyMiddleAgesCost = 600;

int HighMedievalCost = 800;

int RenaissanceCost = 1200;

int EnlightenmentCost = 1500;

int MachineAgeCost = 1800;

int AtomicAgeCost = 2100;

int InformationAgeCost = 2500;

int FutureAgeCost = 3000;

Let’s make it more expensive:

Rewrite it to be:

.uiResearchCost = 100,

37 },

38 .UnlockNaturalResourcesIDs =

39 {

40 },

41 .UnlockedFormationsIDs =

42 {

43 "frm_Wedge",

44 },

45 .UnlockCitySpecialProjects =

46 {

47 },

48 .AddItemsOnUnlock =

49 {

50 .itm_Prestige = 5u,

51 },

52 .GrantBuffs =

53 {

54 },

55 };

